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Many chemical reaction systems exhibit input/output multiplicity characteristics and non-minimum
phase behavior. These inherent characteristics are known to cause limitations in process operation, so it is
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useful to have some knowledge of these at the early design stage of a chemical reaction process. Focusing
on inherently safer designs, this paper addresses a strategy for classifying the process operating region
into distinct zones at the early stage of process design, based on stability/instability and minimum/non-
minimum phase behavior analysis. The strategy is illustrated by two case studies, where the operating
spaces of an isothermal CSTR and an exothermic CSTR are classified into zones with different character-
istics. The results provide information that is very important for guiding process design and operation

rope
STR about how the inherent p

. Introduction

A chemical reaction process is a complex physical and chemi-
al system, often exhibiting severe nonlinear dynamic phenomena.
n certain regions of the operating range, the process exhibits
nput/output multiplicity and non-minimum phase behavior. These
nherent characteristics are known to limit process operation and
ave an adverse effect on the safety and/or product quality of
rocess designs [1,2]. The importance of considering the inherent
haracteristics of a process early in the process design is now being
idely accepted in both academia and industry, as discussed below.

Controllability is a process characteristic that describes the best
chievable control quality, independent of controller design. If the
chievable dynamic performance of a design is not good enough,
hen modifications to the plant design must be considered, such as
hanging inputs or outputs, adding or moving measurement points,
hanging operating points or even making structural changes [2].

measure of the “closed-loop” controllability cannot be calcu-
ated early in process design because the controllers have not yet
een designed. Instead, the phase behavior is used as an “open-

oop” indicator of controllability. In control theory, a linear system
s said to be non-minimum phase when at least one of the zeros

ies on the right-half plane (RHP). For nonlinear systems, the term
on-minimum phase implies unstable zero dynamics which can
e characterized as the internal dynamics of a nonlinear system

n the case where the output is constrained to remain constant

∗ Corresponding author. Tel.: +86 10 62784572; fax: +86 10 62770304.
E-mail address: dcecbz@tsinghua.edu.cn (B. Chen).
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rties of a process change with changes in its operating conditions.
© 2009 Elsevier B.V. All rights reserved.

for all times. Unstable zero dynamics are the nonlinear analogue
to RHP zeros. When the process exhibits non-minimum phase
behavior at one steady-state operation point, the process exhibits
inverse response, that is, its initial dynamic response is in a direc-
tion opposite to the final outcome. Sistu and Bequette showed
control techniques for minimum phase systems, also they men-
tioned the difficulty of controlling non-minimum phase systems
[3]. Non-minimum phase behavior of a process limits the degree
of achievable control quality in the process and complicates con-
troller design. This limitation cannot be overcome by any causal
controller.

When assessing the controllability of chemical plants, Perkins
stated that controllability was one of the most important character-
istics of process operability and that controllability analysis should
be integrated into the early stages of chemical process design [4,5].
Lewin investigated how the selection of the optimal operating point
for a continuous industrial polymerization reactor affected its con-
trollability and resilience [6]. Bogle and Kuhlmann studied the
relationship between input multiplicity and non-minimum phase
behavior and between controllability and optimal operation for
nonlinear single-input single-output (SISO) systems [7]. Also, Bogle
presented a design method for determining the optimal design,
with respect to switchability, out of a range of possible designs
[8]. Kaistha took the closed-loop response as a tool for measur-
ing the control structure controllability [9]. The latter case study

showed that nonlinear dynamic phenomena, due to input multi-
plicity, can compromise the robustness of the control system for a
reactive distillation (RD) column. Ma showed that input multiplic-
ity can cause control difficulties when operating conditions change,
such as changes in disturbances and set points [10].

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:dcecbz@tsinghua.edu.cn
dx.doi.org/10.1016/j.cej.2009.06.036
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Nomenclature

Acronyms
CSTR continuous stirred-tank reactor
DAE differential algebraic equations
LHP left-half plane
MP minimum phase
NMP non-minimum phase
RD reactive distillation
RHP right-half plane

Isothermal CSTR with Van der Vusse reactions
CA concentration of reactant A in mol/L
CB concentration of reactant B in mol/L
CAf concentration of reactant A in feed in mol/L
C0A steady-state concentration of reactant A in mol/L
C0B steady-state concentration of reactant B in mol/L
Q/V dilution rate in L/h
k1 reaction rate constant in h−1

k2 reaction rate constant in h−1

k3 reaction rate constant in L/(mol h)
y output of model, equal to CB

� eigenvalue of zero dynamics

Exothermic CSTR with reactions A → B → C
A heat-transfer area in m2

A1 Arrhenius preexponential factor for first reaction in
s−1

A2 Arrhenius preexponential factor for second reaction
in s−1

CA concentration of reactant A in kmol/m3

CAf concentration of reactant A in feed in kmol/m3

CB concentration of reactant B in kmol/m3

CBf concentration of reactant B in feed in kmol/m3

Cp heat capacity of reaction mixture in kJ kmol−1 K−1

Cpc heat capacity of coolant in kJ kmol−1 K−1

E1 activation energy of first reaction in kJ/kmol
E2 activation energy of second reaction in kJ/kmol
k1 reaction rate of first reaction in s−1

k2 reaction rate constant in s−1

q dimensionless volumetric feed flow rate
qc dimensionless, cooling-medium, volumetric flow
Q volumetric feed flow rate in m3/s
Qc cooling-medium, volumetric flow rate in m3/s
R universal gas constant in kJ kmol−1 K−1

S ratio of rate constants
T temperature of reactor in K
Tc temperature of coolant in K
Tcf cooling-medium feed temperature in K
Tf feed temperature in K
U heat-transfer coefficient in kJ m−1 s−1 K−1

V reactor volume in m3

Vc cooling jacket volume in m3

x1 dimensionless concentration of reactant A
x1f dimensionless feed concentration of reactant A
x2 dimensionless concentration of reactant B
x2f dimensionless feed concentration of reactant B
x3 dimensionless temperature of reactor
x3f dimensionless, reactor feed temperature
x4 dimensionless temperature of coolant
x4f dimensionless, coolant feed temperature
y output of model
y1 output of model, equal to CB

y2 output of model, equal to Tc

ysp1 set point values for controlled variable 1, x2
ysp2 set point values for controlled variable 2, x4

Greek letter: Exothermic CSTR with reactions A → B → C
˛ heat of reaction ratio
ˇ dimensionless heat of reaction
ı dimensionless heat transfer coefficient
ı1 ratio of reactor to coolant volume
ı2 ratio of reacting mixture to coolant specific heat

capacities
� reaction mixture density in kg/m3

� Damkohler number at constant volume
�1 dimensionless Arrhenius preexponential factor of

first reaction
�2 dimensionless Arrhenius preexponential factor of

second reaction
� eigenvalue of zero dynamics
�1 first variable of zero dynamics equation
�2 second variable of zero dynamics equation
�HA heat of reaction of the first reaction in kJ/kmol

T

�HB heat of reaction of the second reaction in kJ/kmol
� dimensionless time

In many applications it is important to know the behavioral fea-
tures of the reactor, such as the number of possible steady states
and the influence of a change in one or more operating variables
on those states. Studies on the dynamic behavior of a continuous
stirred-tank reactor (CSTR) were carried out by Uppal et al. [11], in
this paper, the types of dynamic behavior predicted were illustrated
by numerical computation of the temperature and concentration
trajectories. CSTRs generally present operational problems due to
complex, open-loop, nonlinear behavior in the form of multiplic-
ity, extinction phenomena, Hopf bifurcations, isola formation and
disjoint bifurcations. Some of these phenomena were discussed by
Aris [12]. In the nonlinear analysis of chemical processes, singu-
larity theory and bifurcation analysis have been used effectively to
characterize regions in parameter space, over which many kinds
of solution diagram exist. Methods involving the application of
static and Hopf bifurcation theory to partial differential equations
and a very precise determination of steady-state profiles for study-
ing the bifurcation behavior of tubular reactors were developed
by Jensen and Ray [13]. Balakotaiah illustrated that singularity
theory and bifurcation theory were the most efficient and sys-
tematic tools for ascertaining the maximal number of steady-state
solutions of lumped parameter systems in which several chemi-
cal reactions occur simultaneously [14]. In his work, the regions in
the parameter space corresponding to these solutions were deter-
mined directly. Razon reviewed multiplicities and instabilities in
chemically reacting systems [15]. Russo and Bequette showed that
multiplicity patterns might depend upon modeling assumptions
[16,17]. Gamboa-Torres revealed the effect of process modeling on
the nonlinear behavior of CSTR reactions [18,19]. Recently, Flores-

lacuahuac carried out an open-loop, nonlinear bifurcation analysis
to address the effect of potential manipulated disturbance and
design variables on reactor nonlinear behavior [20]. Seider also
studied multiple steady-state solutions for reactors and showed
that some of these solutions are unstable [21–23].

As can be seen above, so far, considerable attention has been

paid to the analysis of the multiplicity features of reacting systems,
many works have been reported on the stability analysis of reacting
systems under open-loop conditions. Also, it is necessary to con-
sider the phase behavior when studying the multiplicity features
and stability of chemical processes.



3 eering

i
m
r
b
t
r
b
T
d

s
e
t
a
e
d
b
o
c
m
i
i
a

o
r
t
5

2

2
s

u
r
o
t
F
o
w
a
J
o
z
m
c
n

2

w
S
s

A
w
o
c
s

06 Z. Yuan et al. / Chemical Engin

Stability and controllability are important characteristics of
nherently safer process designs [24]. Clearly, instability and non-

inimum phase behavior limit the degree of inherent safety of a
eaction system. It has been recognized that nonlinear and phase
ehaviors exhibited by chemical processes might have impor-
ant effects on process operation and performance. However, little
esearch has been published on considering stability and phase
ehavior simultaneously, while focusing on inherently safer design.
herefore, integrating stability and controllability analysis in the
esign of chemical processes is a topic of broad interest.

Studies in the literature have shown that the controllability and
tability of a process are seriously affected by its design at the
arly stage. It is therefore necessary to have some knowledge of
he nature of the inherent properties a process might possess, even
t the early design stages. The aim of this paper is to provide a strat-
gy for separating the operating ranges of chemical processes into
istinct zones. Focusing on inherent safety, the nonlinear and phase
ehavior analyses are carried out simultaneously. To separate the
perating ranges into distinct zones, steady states of chemical pro-
esses are then classified based on their stability or instability and
inimum phase or non-minimum phase behaviors. Then, by apply-

ng this strategy to isothermal and exothermic CSTR case studies, it
s shown that this strategy has great significance for process design
nd operation.

This article is structured as follows. In Section 2, a description
f the algorithms for separating the operating ranges of a chemical
eaction process is given. In Sections 3 and 4, the strategy is applied
o an isothermal CSTR and an exothermic CSTR. Finally, in Section
, the main conclusions of the paper are given.

. Algorithm for operating zone separation

.1. Algorithm for obtaining the zero dynamics of nonlinear
ystems

For nonlinear systems, the term non-minimum phase implies
nstable zero dynamics. Zero dynamics can be characterized as the
emaining dynamics of a nonlinear system in the case where the
utput keeps to be zero (constant) for all times. Different interpreta-
ions of the zero dynamics lead to differences in their computation.
or the method described in this paper, the detailed algorithm for
btaining the zero dynamics of a chemical process is provided else-
here [25–28]. Whether the zero dynamics are stable or unstable

t a certain operating point can be identified by eigenvalues of the
acobian of the zero dynamics at this operating point. When at least
ne eigenvalue of the Jacobian of the zero dynamics is positive, the
ero dynamics is unstable. Unstable zero dynamics can cause non-
inimum phase behavior. Therefore, the operating zones of the

hemical reaction system can be divided into minimum phase and
on-minimum phase zones, according to the zero dynamics.

.2. Algorithm for stability analysis

Consider a nonlinear dynamic equation of the type

dX

dt
= F(X,�)

here X is the state variable and � is a variable parameter. X ∈Rn.
et FX(X, �) as the Jacobian matrix of F(X, �). X0 is the steady-state
olution of F(X, �) = 0 at �=�0, i.e. X0 is the solution of F(X, �0).

For the system described above, the method is applied as follows.

t the first step, the extended homotopy-continuation method [29],
hich is effective in achieving global convergence, is applied to

btain all the steady-state solutions in the parameter space of the
hemical process. Then, analysis is carried out on these steady-state
olutions to identify their stability characteristics, based on singu-
Journal 155 (2009) 304–311

larity theory. The stability characteristics of the chemical process
will change with variations in the system parameters. Therefore, it
is important to identify singularity points where changes to a chem-
ical process system’s stability characteristics occur. As a result, the
parameter space can be divided into several subspaces, over which
different characteristics, The stability of a system is determined by
the eigenvalues of the Jacobian matrix. If all eigenvalues are in the
left-half plane (LHP), the system is stable; otherwise the system is
unstable.

The algorithm is described as follows:

(1) Compute all steady-state solutions of the chemical system.
Compute the solutions of F(X, �) = 0 at different �.

(2) Compute singular values of the chemical system’s Jacobian
matrix.

Compute the rank of the matrix FX(X, �) under certain � and
the related solution of X. If r(FX) = n − 1, the� and related X are at
a singularity point. The stability of the system would differ sig-
nificantly between the two sides of the singularity point. Record
the singularity point (Xs, �s).

(3) Determine the stability status on both sides of the singularity
point.

Obtain one point on each side of the singularity point in the
solution curve, computing all eigenvalues of FX(X,�). If all eigen-
values are in the LHP, the system at the operating point is stable;
otherwise the system is unstable. The stability status is con-
tinuous and often changes as it passes through the singularity
point. Only a few points need to be calculated to determine the
stability status.

(4) Repeat the above process to identify all the singularity points
and to determine the stabilities on both sides of each singularity
point.

2.3. Algorithm for zone separation, integrating stability and phase
behavior

For a chemical reaction system described by differential equa-
tions, whose stability properties are determined by eigenvalues of
the process Jacobian, if all eigenvalues lie in the LHP, then the system
is stable; if at least one of eigenvalues lies in the RHP, the system is
unstable. When eigenvalues are conjugate complex roots, the imag-
inary part of roots cause oscillation, if the real part of eigenvalues
is below zero, the system is asymptotical stable, if the real part is
up to zero, the amplitude of oscillation becomes larger and larger
under disturbances, the system is unstable. When the real part is
equal to zero, i.e. all eigenvalues lie on the imaginary axis, it can
cause the limit cycle behavior, equiamplitude periodic oscillation
will happen, although the occurrence of this situation is rare, also
it is regarded as unstable.

Analysis the stability of the process zero dynamics is similar to
the analysis the stability of the system. If all eigenvalues of the pro-
cess zeros dynamics are in the LHP, then the zero dynamics are
stable, the system exhibits minimum phase behavior. Otherwise
the process exhibits non-minimum phase behavior. Based on these
two rules, the operating range can be divided into sub-regions. The
flowsheet for zone classification can be seen in Fig. 1.

The detailed steps are as follows:

(1) Set-up dynamic mathematical modeling of the chemical pro-
cess described by differential algebraic equations (DAEs).
(2) Solve the DAE, based on the extended homotopy-continuation
algorithm, to obtain all the steady states.

(3) Obtain the zero dynamics of the chemical process.
(4) Determine the characteristics of the steady states (stable or

unstable), based on singularity theory and bifurcation theory.
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phase behavior.
Application of the algorithm described in Section 2.2 reveals that

all of the steady states of the process are stable. Therefore, the whole
operating region of the process can be divided into just two sub-
zones (zone I, a stable non-minimum phase and zone II, a stable
Fig. 1. A schematic diagram of zone classification.

5) Solve eigenvalues of the Jacobian of zero dynamics to determine
whether the zero dynamics are stable or unstable.

6) Segregate the whole operating range into distinct zones, based
on the results obtained from steps 4 and 5.

. Example: isothermal CSTR with Van der Vusse reactions

Consider the following reaction network, called the Van der
usse reaction [30], where B is the desired product:

k1−→B k2−→C

A
k3−→D

The model equations of the process are given by

dCA
dt

= −k1CA − k3C
2
A + Q

V
(CAf − CA) (1)

dCB
dt

= k1CA − k2CB − Q

V
CB (2)

= CB (3)

here k1 = 50 h−1, k2 = 1.5 h−1 and k3 = 500 L/(mol h) are the reac-
ion rate constants CAf = 1 mol/L [7], is the concentration of A in the
eed stream and CA is the concentration of A in the reactor. The con-
rolled variable is the concentration of B, CB and the manipulated
ariable is the dilution rate, Q/V.

Setting the output and its derivative equal to zero in Eq. (2),
olving the remaining system and substituting Q/V into Eq. (1), we

an easily obtain the zero dynamics of the Van der Vusse reaction
odel:

dCA
dt

= −k1CA − k3C
2
A + (CAf − CA)(−k2y− k1CA)

CB
(4)
Fig. 2. Relationship between the steady states and dilution rate.

The eigenvalue, �, of the Jacobian of the process zero dynamics
as a function of the states is expressed by

� = −k1 + k2 − 2k3C0A + CAf k1 − 2k1C0A

C0B
(5)

where C0A and C0B are the steady-state concentrations for the
model

C0B =
k1(−k1−(Q/V)+

√
k2

1+2k1(Q/V)+ 4CAf k3(Q/V)+(Q/V)2)

2k3(k2 + (Q/V))

C0A = −(k1 + (Q/V))
2k3

+

√
k2

1+2k1(Q/V)+ 4CAf k3(Q/V)+(Q/V)2

2k3
(6)

Fig. 2 shows the relationship between the steady-state yield of
the desired product and dilution rate. If the steady-state solution is
inserted into Eq. (5), an analytical expression for the eigenvalue of
the zero dynamics as a function of the input in the whole operation
region is obtained. The relationship between the eigenvalue of the
zero dynamics and the input is depicted in Fig. 3.

If the sign of� is negative at a given steady state, the zero dynam-
ics is stable at this steady state, so the system has minimum phase
behavior at this steady state. Through analysis of Figs. 2 and 3 it is
clear that the eigenvalue of the process zero dynamics changes from
positive to negative, corresponding to a change from non-minimum
to minimum phase at a certain Q/V equals to 3.9 L/h. Further, it can
be seen from Figs. 2 and 3 that at the maximum yield of reactant B
the eigenvalue of the process zero dynamics is equal to zero. Thus,
when Q/V < 3.9 L/h, the process will exhibit non-minimum phase
behavior, and when Q/V > 3.9 L/h, the process will exhibit minimum
Fig. 3. Relationship between the eigenvalue of the zero dynamics and dilution rate.



308 Z. Yuan et al. / Chemical Engineering Journal 155 (2009) 304–311

m
B
y
m
s

m
s
r
c
F
l

p
t
b
i
d
t
o

4

e

A
R
c
d
c
t

Table 1
Dimensionless variables and parameters of exothermic CSTR.

x1 = CA
CAf0

x2 = CB
CAf0

x3 = T−Tf0
Tf0

	

x4 = Tc−Tf0
Tf0

	 x1f = CAf
CAf0

= 1 x2f = CBf
CAf0

= 0

x3f = Tf −Tf0
Tf0

	 = 0 x4f = Tcf −Tf0
Tf0

	 = −1 
1(x3) = ex3/(1+(x3/	))


2(x3) = e x3/(1+(x3/	)) � = Q0
V t q = Q

Q0

qc = Qc
Q0

ı = UA
�CpQ0

= 0.78 ı1 = V
Vc

= 10
Fig. 4. Step responses of NMP zone at the steady state Q/V = 2.6 L/h.

inimum phase). Compared Fig. 2 with those of Kuhlmann and
ogle [7], it can be seen that they only did the phase behavior anal-
sis, but in our paper, as shown in Fig. 2, the stability/instability and
inimum/non-minimum phase behaviors are taken into account

imultaneously.
For a step change at the steady state Q/V = 2.6 L/h in the non-

inimum phase region, the responses are shown in Fig. 4. For a
tep change at the steady state Q/V = 6 L/h in the minimum phase
egion, the responses are shown in Fig. 5. The inverse response,
aused by non-minimum phase behavior, can clearly be seen in
ig. 4. Apparently, the inverse response limits the achievable closed-
oop performance, regardless of the control law used.

Because the multiple steady-state phenomenon exists in this
rocess, its design at two Q/V values can lead to the same yield of
he desired product. The input multiplicity implies that there will
e a change in the sign of the steady-state gain of a process when the

nput varies over its range, which makes its controller design very
ifficult. Therefore, it is important to analyze the phase behavior of
his chemical process and the result would have a significant impact
n process controller design.

. Example: exothermic CSTR with reactions A → B → C

The mathematical model which describes a CSTR in which two
xothermic, irreversible, first-order reactions take place in series
k1−→B k2−→C is derived from dynamic material and energy balances.

eactor volume and physical parameters are assumed to remain
onstant and perfect mixing is also assumed. In addition, the
ynamics of the cooling jacket are taken into account. The model
onsists of the following four nonlinear, ordinary differential equa-
ions [18]:

dCA Q
dt
=
V

(CAf − CA) − k1(T)CA (7)

dCB
dt

= Q

V
(CBf − CB) − k2(T)CB + k1(T)CA (8)

Fig. 5. Step responses of MP zone at the steady state Q/V = 6 L/h.
ı2 = �Cp
�cCpc

= 0.952 S = k2(Tf0)

k1(Tf0) = 1.015 � = V
Q0
k1(Tf0) = 0.06

ˇ = −�HACAf0	
�CpTf0

= 8 ˛ = −�HB
−�HA = 0.19 	 = E1

RTf0
= 27.85

 = E2
E1

= 0.32

dT

dt
= Q

V
(Tf − T) + k1(T)CA

−�HA
�Cp

+ k2(T)CB
−�HB
�Cp

− UA

�CpV
(T − Tc) (9)

dTc
dt

= Qc
Vc

(Tcf − Tc) + UA

�CpcVc
(T − Tc) (10)

where the kinetic constants are

k1(T) = A1e
−E1/RT (11)

k2(T) = A2e
−E2/RT (12)

According to dimensionless parameters and variables defined in
Table 1, Eqs. (7)–(10) can be written in dimensionless form as Eqs.
(13)–(16):

dx1

d�
= q(x1f − x1) − x1
1(x3)� (13)

dx2

d�
= q(x2f − x2) + x1
1(x3)� − x2�
2(x3)S (14)

dx3

d�
= q(x3f − x3) + ı(x4 − x3) + ˇ�[x1
1(x3) + ˛x2
2(x3)S] (15)

dx4

d�
= ı1[qc(x4f − x4) + ıı2(x4 − x3)] (16)

In Eqs. (13)–(16), x1 is the dimensionless concentration of reac-
tant A, x2 is the dimensionless concentration of reactant B, x3
is the dimensionless reactor temperature and x4 is the dimen-
sionless cooling jacket temperature. Here, the controlled variables
are the dimensionless concentration of B, x2, and the dimension-
less temperature of coolant, x4. The manipulated variables are the
dimensionless feed and coolant flow rates, q and qc, respectively.

Set

� =
[
�1
�2

]
=

[
x1
x3

]
(17)

ysp =
[
ysp1
ysp2

]
=

[
x2
x4

]
(18)

According to the algorithm to obtain the zero dynamics of non-
linear systems, the zero dynamics equations are

�̇1 = −
1(�2)(−x2f+ysp1)��1−(−x1f+�1)(
2(�2)Sysp1�−
1(�2)��1)
ysp1 − x2f

(19)
�̇2 = (ysp1 − x2f ){−ˇ�[�1
1(�2) + ˛ysp1
2(�2)S] − ı(ysp2 − �2)]}
ysp1 − x2f

− [�1
1(�2)� − ysp1�
2(�2)S](�2 − x3f )
ysp1 − x2f

(20)
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Fig. 6. Relationship between dimensionless feed q and x1.
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Fig. 8. Relationship between dimensionless feed q and x3.

F
s

Fig. 7. Relationship between dimensionless feed q and x2.

First, set qc = 0.4, using the extended homotopy-continuation
lgorithm to solve the steady-state solutions of Eqs. (13)–(16).
ased on the steady-state solutions, the input/output multiplic-

ty characteristics of this chemical reaction system can be studied.
elationships between dimensionless feed q and x1, dimensionless

eed q and x2, dimensionless feed q and x3 and between dimension-
ess feed q and x4 are shown in Figs. 6–9, respectively.

Based on the algorithm described in Section 2.2 for identifying
he stable and unstable zones, the operating region can be separated
nto a stable zone and an unstable zone. The operating region can
e divided into a non-minimum phase zone and a minimum phase
one by eigenvalues of the Jacobian of the process zero dynam-
cs, as described by Eqs. (19) and (20). By integration of the above
esults, the entire operating region of the chemical reacting system
an be separated into three distinct zones (zone I, stable minimum

hase zone; zone II, unstable minimum phase zone; and zone III,
table non-minimum phase zone). The results are also shown in
igs. 6–9.

Now, consider simultaneously changing both of the manipulated
ariables, dimensionless feed and coolant flow rate. The results are

ig. 10. Zone classification for the space surface of x1–q–qc . 1: stable minimum phase
ubspace.
Fig. 9. Relationship between dimensionless feed q and x4.

shown in Figs. 10–13, along with the separation of the operation
space into subspaces with different characteristics.

It can be seen that three subspaces exist: stable minimum
phase subspace, unstable minimum phase subspace and stable
non-minimum phase subspace. Within the stable minimum phase
subspace, the system will run smoothly, even if some variable dis-
turbances are encountered. Within the stable non-minimum phase
subspace, the system will run smoothly only around a certain oper-
ating point and will not run smoothly if variable disturbances are
encountered. Finally, within the unstable minimum phase sub-
space, the system may change significantly or run away even
under very minor disturbances. The latter subspace is dangerous,
so efforts should be made at the conceptual design stage of this
reacting system to avoid selecting process operating regions in this
subspace. This chemical process system is very difficult to control

within the stable non-minimum phase subspace. In many cases,
operation is more profitable at an unstable steady state or at a sta-
ble steady state that often involves non-minimum phase behavior.
For these types of processes, controller designs are more challeng-

subspace; 2: unstable minimum phase subspace; 3: stable non-minimum phase
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Fig. 11. Zone classification for the space surface of x2–q–qc . 1: stable minimum phase subspace; 2: unstable minimum phase subspace; 3: stable non-minimum phase
subspace.

Fig. 12. Zone classification for the space surface of x3–q–qc . 1: stable minimum phase subspace; 2: unstable minimum phase subspace; 3: stable non-minimum phase
subspace.
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ng. Thus, the elimination of instability and/or non-minimum phase
ehavior could be achieved through changes in the operating con-
itions, such as inlet changes involving feed concentration and/or
he cooling water flow rate.

This method can be applied for more complex reaction systems,
uch as industrial polymerization process and TE process. Extend-
ng this method to these complex systems and periodic solution
ranches will be further studied.
. Conclusions

This paper presents a strategy for classifying the operating
egion into sub-zones at an early stage of chemical process design,
subspace; 2: unstable minimum phase subspace; 3: stable non-minimum phase

to ensure that the designed processes are inherently safer. The
strategy is applied to isothermal CSTR and exothermic CSTR
examples. The results show that these systems’ characteristics
of stability and phase behavior varied with the process oper-
ating conditions, such as feed flow rate and cooling flow rate,
providing important information for process design and opera-
tion. In many cases, operation is more profitable at an unstable
state involving non-minimum phase behavior. For these types of

processes, controller designs are more difficult and challenging.
Consequently, it is important to account for the trade-offs between
stability, controllability and product quality when selecting an
appropriate chemical process design that meets practical require-
ments.
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